REPLACE CRYPTOPELBIA WITH PSEUDOGALLERIA?

Through a number of conversations with Marianne Horak, she has convinced me that the monotypic North American genus *Pseudogalleria* Ragonot, 1884, and the Old World genus *Cryptophlebia* Walsingham, 1900, are almost certainly synonymous. Although the two are somewhat dissimilar in facies, they are remarkably similar in the male and female genitalia. Adamski & Brown (2001) identified *Pseudogalleria* as the sister group to *Cryptophlebia*, but their analyses were not based on species-level taxa, relying instead on the recognized genera without questioning their monophyly.

The proposed synonymy of the two genera would have a profound affect on the economic literature and those who depend upon it owing to the large number of papers that deal with *Cryptophlebia* species as pests worldwide. It is possible that the outcry from economic entomologists would be deafening! However, I deal with plant protection and quarantine personnel on a daily basis, and they adapted fairly rapidly to the use of *Thaumatotibia* for the pest species formerly (and for many years) referred to as *Cryptophlebia leucotreta* (Meyrick) (the false codling moth), as revised by Komai (1999).

An alternative to the proposed synonymy would be to petition the International Commission of Zoological Nomenclature (ICZN) to suppress *Pseudogalleria* in order to preserve stability.

Marianne Horak asked me to query the readers of TORTS for your opinions regarding the possible alternative solutions: (1) synonymize the two genera under the senior synonym *Pseudogalleria*, or (2) petition the ICZN to suppress *Pseudogalleria* for the purpose of maintaining stability, and continuing the use of *Cryptophlebia*.

Please forward your comments on this matter to me or Marianne, and I will present the results in the next issue of TORTS. Thank you for your consideration.

COMMITTEE ON TORTRICID NOMENCLATURE

In the last issue of TORTS, I reported that Dr. B.-K. Byun has proposed the development of a committee for upgrading and correcting the nomenclature in World Catalogue of Tortricidae once the data are converted into a database by Dr. Joaquin Baixeras. I have always believed that we could do more as a “community” than we can do as individuals, and I continue to believe this is true. If you would like to participate in such a committee, please contact Dr. Byun.
DISCOVERY OF LIGHT BROWN APPLE MOTH IN NORTH AMERICA

Leave it to Dr. Jerry Powell, pseudo-retired professor of entomology from the University of California, Berkeley, to cause trouble... make that “big trouble”... in California.

For years the California Department of Food and Agriculture (CDFG) and U.S. Department of Agriculture (USDA) have feared the potential arrival of the light brown apple moth, Epiphyas postvittana (Walker), in North America. However, negative results from trapping projects have brought a degree of comfort. All that changed last year when TORTS founder Jerry Powell discovered a male E. postvittana at the blacklight sheet at his home in the Berkeley Hills, California. After a second specimen was collected and subsequently identified by Marianne Horak, panic struck. Thousands of pheromone traps were deployed and quarantines were implemented, hitting those in the nursery industry the hardest. The moth now has been recorded from 11 different counties in the state, mostly within the San Francisco Bay Area. The latest county record, from Los Angeles County, is hundreds of miles south of San Francisco. Los Angeles County is within an important citrus-growing region of the state, elevating the potential for economic impacts from the moth species.

Epiphyas postvittana is indigenous to Australia. It occurs in all apple-growing areas of the country, but is found mainly along the coast, extending inland up to about 200 miles. It was inadvertently introduced into Tasmania, New Zealand, and New Caledonia. It was first collected in Hawaii in 1896; it is now common and widespread on those islands. Meyrick (1937) reported its discovery in the United Kingdom. Bradley et al. (1973) reported that it was first established in Cornwall in the U.K., and that it subsequently spread throughout much of the country. Bond (1998) first reported it from Ireland. In the U.K. it apparently has not become an economically important pest of crops.

Larvae are highly polyphagous and have been reared from leaves, flowers, and fruit of a variety of herbaceous plants, including Acacia, Baccharis, Buddleia, Centranthus, Chrysanthemum, Citrus, Crataegus, Escallonia, Eucalyptus, Euonymus, Fragaria, Hebe, Hedera, Hypericum, Jasminum, Lavandula, Ligustrum, Litchi, Malus, Mesembryanthemum, Mentha, Pinus, Prunus, Pulicaria, Pyracantha, Quercus, Rosa, Rubus, Urtica, and Vitis, plus many other garden and greenhouse plants.

Stay tuned to see what affect this little moth has on the economy of America’s most prodigious agricultural state - California.

TORTRICID BIBLIOGRAPHY FOR 2006


Bagnoli, B. & A. Lucchi. 2006. Parasitoids of...

Grapholita molesta, Platynota stultana


Byun, B.-K., S.-C. Yan & C.-D. Li. 2006. Six new faunistic data of the tribe Euco-


Grant, G. G. 2006. Foliage architecture explains oviposition preference of spruce budworm (Lepidoptera: Tortricidae) for white spruce over balsam fir. Canadian Entomologist 138: 198-204.


Horak, M. 2006. Olethreutinae moths of
Australi a (Lepidoptera: Tortricidae). Monographs on Australian Lepidoptera 10. 522 pp.

Ifoulis, A.A. & M. Savopoulou-Soultni. 2006. Use of geostatistical analysis to characterize the spatial distribution of Lobesia botrana (Lepidoptera: Tortricidae) larvae in northern Greece. Environmental Entomology 35: 497-506.


Kuhrt, U., J. Samietz & S. Dorn. 2006. Effect of plant architecture and hail nets on temperature of codling moth habitats in apple orchards. Entomologia Experi-
mentalis et Applicata 118: 245-259.
Nasu, Y. 2006. Lopha rcha mori utii, sp. nov. and Polylopha cassiicola Liuj & Kawabe (Lepidoptera, Tortricidae, Chlidanotinae, Polyorthini) from Thailand and Hong Kong. Zootaxa 1369: 55-61.


Oku, T. 2006. Revised name for “Enarmonia formosana” recorded from Japan. Yugato 184: 44.


Spitzer, K. & J. Jaroš. 2006. First record of Cydia alazon (Diakonoff, 1976), from La Palma Island (Canary Islands, Spain) with taxonomic and ecological notes (Lepidoptera: Tortricidae). SHILAP Revista de Lepidopterologica 34: 371-378.


Trematerra, P. & L. Mazzon. 2006. Ancylis tinea (Hübner) (Lepidoptera, Tortricidae) damage to Cotoneaster sp. in northern Italy. InformatorFitopatologico 56: 52-56.

Trematerra, P. & A. Sciarretta. 2006. Activity of the kairomone ethyl (E,Z)-2,4-decadienoate in the monitoring of Cydia pomerolena (L.) during the second annual flight. Redia 88: 57-62.


The TORTS Newsletter is distributed twice per year: January-February and July-August. Membership or subscription is free. For information contact: John W. Brown, Systematic Entomology Laboratory, USDA, Smithsonian Institution, P.O. Box 37012, National Museum of Natural History, Washington, DC 20013-7012, USA. E-mail: john.brown@ars.usda.gov